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Received 31 May 1994 

Abswaact. A quantum stochastic calculus for fermions is developed where the basic integra- 
tors are based on Dirac fields and the charge operator. The associated It6 formula has 
seven non-trivial correction terms. Conditions are found for the solutions of stochastic 
diRerential equations to be unitary and it is shown that the corresponding quantum stochas- 
tic flow manifests a broken symmetry whereby the particle and antiparticle noises no longer 
balance each other. An abstract theory of such flows is then developed. By employing the 
unification between boson and fermion stochastic calculi, we are able to develop the entire 
theory using boson Fock spaces. 

1. Introduction 

The dissipative behaviour of a quantum system (S) is described by considering its 
interaction with another quantum system (R)-the ‘reservoir’ or ‘heat bath’. We will 
in this paper be interested in the case where R is of a fermionic nature. 

Historically, a number of models have been considered where the interaction was 
taken to be a ‘quantum noise’ (see [Awl for a nice account of this). A precise mathemati- 
cal theory of quantum noise has been developed by Hudson and Parthasarathy 
([HuPal], [Par], [Mey]) in which the behaviour of the noise is described by a stochastic 
calculus based on three fundamental operator-valued stochastic processes constructed 
from suitable annihilation, creation and number conservation operators acting in a 
Fock space. Specifically fermionic theories of this type were developed in [BSW], 
[ApHu], [Appl] and [HuPaZ]. 

Quantum stochastic calculi give rise to the following model of dissipative behaviour. 
Observables associated with S are modelled by (the self-adjoint) elements of some 
unital *-algebra I acting in an ‘initial’ Hilbert space go and observables associated 
with R act on the Hilbert space r (usually a Fock space). The combined state space 
for (St R) is $=5jo@r. The evolution of state vectors in sj is described by a unitary 
operator valued process U = ( U ( t ) ,  leRC) which satisfies an appropriate stochastic 
differential equation and the time evolution of an operator x e I  is described by the 
quantum stochastic flow J = (  j , ,  taR’) where j , (x )=  U(r)xU(r)*. We note that U and 
J do not satisfy a group law in general but are ‘Markovian cocycles’ in the sense of 
[Acc]. Finally the reduced dynamics in S is  a quantum dynamical semigroup (T,, la@) 
on I [Lin] obtained through the prescription T , ( x ) = ( y a , j , ( x ) y o )  where yo is the 
vacuum vector in r. 
0305-4470/95/020257 t 14S19.50 0 1995 IOP Publishing Ltd 257 
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A long sequence of papers by Accardi et a1 have justified the validity of this model 
for a number of concrete physical systems where the weak coupling or low density limit 
is taken-[AFL] and [AcLu] are particularly relevant to the context considered below 
(see also [AAFL] for an exposition of the main ideas). 

So far quantum stochastic calculi have generally been based on non-relativistic free 
fields acting in Fock space. An exception to this rule is [FrRu] where a specific relativis- 
tic model was considered using boson noise. The aim of the present paper is to begin 
the study of a quantum stochastic calculus based on relativistic fermion fields where 
the quantum noise has both ‘particle’ and ‘antiparticle’ components (e.g. an electron- 
positron field). 

Instead of the usual three quantum noises described above, we employ two mutually 
adjoint Dirac fields (sums of particle creation (annihilation) and antiparticle annihila- 
tion (creation) operators, respectively) and the charge conservation operator. We thus 
obtain au irreducible representation of the CARS (canonical anticommutation relations) 
on Dirac-Fock space which is the tensor product of two fermion Fock spaces [Tha]. 
Using the unification procedure of [HuPa2] and [PaSi], we are able to realise these 
operators in boson Fock space which leads to considerable mathematical simplification 
(compare [HuPa2] with [Appl]). By &-grading boson Fock space in a natural way, 
we are also able to incorporate a Z2-graded initial space into this scheme so that Scan 
be either bosonic or fermionic. 

The scheme of this paper is as follows. In sections 2 and 3 below we give an account 
of the ideas discussed in the previous paragraph. The construction of a stochastic 
calculus and the vitally important It6 formula for the product of two stochastic integrals 
are described iu section 4. In section 5 we construct the unitary process U and the 
associated flow J .  Here we encounter an interesting phenomenon whereby the Dirac 
fields which drive U become decoupled in the equation for J so that the particle and 
antiparticle noises interact with the system observables in different ways. Finally we 
consider abstract ‘Dirac flows’ J in section 6,  these being of general interest from the 
point of view of supersymmetric quantum theory and noncommutative differential 
geometry (see [HudZj, [AppZ]). 

In order for this paper to be accessible to a wide range of potential readers, we have 
omitted complete proofs for some of our results where these are of a highly technical 
nature. Full details will appear in future publications. 

Norotion. Let VI and V2 be complex vector spaces. 2( V,  , V,) will denote the space of 
all linear maps from Vi into V2. We write this space as a( V )  when VI = V2= V.  
V,@VZ will denote the algebraic tensor product of VI and V2.  The identity operator 
on -Vwill always be denoted as I. If Tis  an operator in a Hilbert space any statement 
involving T# should be read twice, once where T# is read as T and once where it is 
read as T*. If S, T E ~ I  where 2I is an algebra, [S, TI =ST- TS is the commutator and 
{S, T} =ST+ TS, the anticommutator. 

2. Quantum stochastic calculus 

Let K be a complex, separable, infinite-dimensional Hilbert space. We denote by T , ( K )  
and r t ( K ) ,  respectively, the boson and fermion Fock spaces over K.  
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Thus 
C O  m 

r b ( K ) =  @ K'@J" and rr(K) = 0 K(@*? 
" - 0  0 - 0  

where 0, denotes the symmetric and Q, the antisymmetric tensor product. For each 
f s K ,  let e ( f ) e r , , ( K )  denote the exponential vector 

then Cis dense in r b ( K )  where 8 is the linear span of { e ( f ) ,  f s K } .  For eachfeK, we 
denole by a ( f )  the boson annihilation operator in rb(K) and by a ' ( f ) ,  the boson 
creation operator. We also introduce the conservation operator dT(X) for X s B ( K ) .  
Precise definitions can be found in [Par]. We take 8 as a common domain for all three 
classes of operator. Note that on C we have 

u ( f  )* =a'(/-) and dr(X)*=dr(X*) 

for eachfcK, X E B ( K ) .  We further have that the extended CCRs hold on 8 i.e. for all 
L g s K a n d X ,  Y e B ( K )  

[a(f). &)l=[a'(f), a+(g)l=O 

[a(f)*a'(g)l=(f,g)I 

[a(f) ,  dr(X)I=a(X*S) 

[ d W ) ,  dUY)I=dr([X, 1'1) 

[ d W ) ,  a'(f)I= -at(Xf). 

Now let P be a continuous projection valued measure on R taking values in B ( K ) .  
We write P,=P(- lo ,  I )  for each t e R .  We fix U, ueKand X s B ( K )  such that [X, P,]= 
0 for all t e R .  We define the boson annihilation process A,={A.( t ) ,  teR} by 

A&) =a(P,u) .  

AL(t) =a'(P,u) 

The boson creation process A:= {A: ( t ) ,  tsR} is given by 

and the conservation process Ax= {Ax(f), faR} is 

A,(t)  = d T ( P , X ) .  

In [Par] quantum stochastic integrals M =  { M ( f ) ,  t eR}  of the form 

M ( t )  = (2.1) 

are defined as families of linear operators with domain 8 where HI= { H j ( t ) ,  feR) for 
j= 1,2,3,4 are suitable operator-valued processes. 

A vital role in this theory is played by the quantum It6 formula which states that 
if M I  and Mz are two stochastic integrals of the form (2.1) then so is their product 

( H ~ ( s )  d A h )  + Hds) a x  (s) + ffds) dA&) + H ~ S )  ds) sr, 
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MIM2= {Ml( i)M2(t),  tslW}. Moreover the form of the product is determined by 

d(M, M,)=dMI. M 2 f  M I .  dMl+dM, .dM2. (2.2) 

The It8 correction term dM, dM, is computed by bilinear extension of the rule that 
all products of differentials vanish with the exception of 

dA,(/) dAt(t) =d(P,u. U> 

dA,y(t) dAL(t) = dAl.(t) 

dA,(t) dAx(t) = dAx*.(t) 

dA,y(/).dA,(f)=dAxz(t). 

Now let J =  {J(z),  t s R }  be defined on 8 by 

J ( 0 d f )  = r w -  2PO.f) for eachfsK 

so that each J ( t )  extends to a self-adjoint, unitary operator on rb(K) which thus satisfies 
J ( t ) 2 = 1  for each teR. We further define for each U, u s K ,  

It is shown in [PaSi] and [HuPa2] that we thus obtain an irreducible representation of 
the CARs in rb(K). In fact the extended CARs hold with the same conservation 
operators as for the boson case, i.e. 

@(U), b(u)}  = {bt(u), b'(u)) = O  

{b(u),  b'W} = (u,  U>[ 

[m, W X ) I  =b(x*u) 

[dr(X), b*(u)] =-bt(Xu). 

This representation can be used to construct a canonical isomorphism t K  between rb(K) 
and T , ( K ) ,  the details of which can be found in [PaSi]. 

3. Duac-Fock space 

Let Sj be a complex, separable Hilbert space. It is said to be H2-gruded if it has a 
decomposition 

Sj= Sj+@sj-. . 
Sj+ is called the odd sector and Sj-, the even sector of $5. A dense linear manifold 9 is 
called a Z2-gruded donraipr if it admits the vector space deconiposition 9=f2+@3- 
wherein 2 2 + ~ S j +  and 9-c_Sj-. We denote by 0 the parity operator in r j  which a& as 
I on sj, and - I  on Sj-. 0 is self-adjoint and unitary. 

A linear operator Tin 5j with domain 52 is said to be cum if T9,cSj* and odd if 
Tf2,cSjT. The panty *-automorphism p of B(Sj) is defined by p ( T ) =  BTB. 
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If 51 and $2 are &graded Hilbert spaces, their tensor product 5 1 @ ~ z  is also 
Z2-graded by the prescription 

(51@52)+ = ( 5 1 + @ 5 2 + ) 8 ( 8 r - 8 5 2 - )  

(51 @5d- = tel+@52-)o(sjl+@52-). 

Similarly if 9j are &graded domains in 5j ( j =  1,2), then 9 1 @ 9 2  is a 4-graded 
domain in $ j I @ B a .  If are linear operators in Bj with domain 9; ( j =  1,2) and T2 is 
of definite parity, the Chevulley tensorproduct TI 6 Tz is defined by linear extension of 
the formula 

(7-1 Q ~ 2 ) ( u l B u 2 ) = ( - l ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ( T l u I ~ T 2 u 2 )  

where u,cgj ( j =  1,2) with U, of definite parity and 

1 if' T2 is odd 
if T2 is even W 2 )  = [o 

with S(ul)  defined similarly (see [Che], [ApHu]). The definition extends by linearity to 
the case where Tz is not of definite parity. We note the following easily verified properties 
of the Chevalley tensor product: 

(i) 

for S2, TI of definite parity, the operators being such that the right hand side is well- 
defined. 

(SI Q S 2 ) ( ~ l Q  T ~ ) = ( - I ) ~ ' ~ ~ ' ~ ' ~ ~ ~  (SISZ Q TI 7-21 

(ii) { s Q I , I O T ) = O  if S and Tare both odd. 

(iii) 
Now consider boson Fock space rb(K)-this is Z2-graded by the prescription 

[SQ,,IQT]=O 

(86 T)* = -s* 6 T* 

if S and Tare of definite parity but not both odd. 

if S and Tare both odd. 

Define for each f e K ,  

then D i s  a Z2-graded domain in T b ( K )  with 8, being the linear span of {cosh(/), fe$} 
and 8-, the linear span of {sinh(f),/E$}. We note that boson annihilation and 
creation operators are odd and conservation operators are even. 

Fermion Fock space T r ( K )  is also &-graded by 
s m 

T,(K),= 0 K(@J2'  and r I ( K ) _ =  0 K ( @ * ) ~ + ' .  
"-0 " - 0  

We note that the isomorphism t x  preserves the grading i.e. LK(rb(K)*) = T r ( K ) ,  
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Now suppose that K is itself &-graded, K = K + @ K . .  and denote by rI the ortho- 
gonal projections from K onto K+, then we have the canonical isomorphism 

rb(K)E rb(K+)@rb(K-) 

wherein each e( f )  is mapped to e ( r , f ) @ e ( a - f ) .  We use this isomorphism to identify 
the two spaces. Let Sj=sj+@&- be another &graded Hilbert space and define Kt= 
sj+ and K- = Csj- where C is complex conjugation. We define Dirac-Fock space &($) 
to be the Ergraded Hilbert space Tb(K) where K is as above. Using the isomorphism 
i K , @ t K - ,  we identify s(5) with Tf(Kt)@rf(K-) (this latter form may be more familiar 
to some reader-ee e.g. [Tha]). 

Now for each ussj, define the Diracfield operators by 

Y(u)=b(r,u) 6 I+ I 6  b'(z- 17) 

"+(U) = bt(ztu) 8 f +  28 b ( z - i )  
and for X E B ( ~ ) ,  

O )  
0 x- 

define the charge operator 

8 ( X ) = d T ( X + ) ~ I - I ~ d r ( X 1 ) .  

I t  is shown in [Tha] that (Y(u) ,  @(U); U, U E ~ }  yield an irreducible representation 
of the CARS in s(5j). Moreover, we note that the extended CARS hold i.e. 

{W), W O ) )  = {Yt(d, ' r t ( U ) 1  =o 
?w4, ' r t ( U ) 1  =<U, 

[E(X), 8( Y ) ]  = 8 ( [ X ,  U]) 

[Y(u) ,  e(x)]=Y(X*u) 
[E(X), Y+(u) ]=  -Y'(Xu) 

for all U, us5 j ,X ,  YsB(Sj+)@B(sj-) .  
In the following we will occasionally use the notation p # ( f )  = b " ( r + f )  @ I to 

denote fermion parficle creation and annihilation operators and a#(f) = I 6  b#(n-T) 
to denote anfipartick creation and annihilation operators. 

We remark that we have the following stochastic integral representations for Dirac 
fields in terms of boson processes 

J-P J -m 
P m 

J(r) dAL+u(r)61+16 (3.2) 

m m 

d&,( t) &I- f6j-m d&r( f ) .  (3.3) 

Here J is defined with respect to a B(B)-valued projection valued measure P which 
satisfies [P(/), nJ=0 for all /eR. 
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4. Stocliastic integration 

In the remainder of this paper, in order to develop a stochastic theory, our projection 
valued measure P will be defined only on R'. 

We define the Diracprocesses Y,#= {Yf(t), telW"} by 

Yf = Y#(P(t )u)  for ER+' ,  ussj. 

So that each 

Y"(0 =P"(t)+dL(t) 

Yt( f )  =PLt(r) +d&) 

and 

where @ f ( t ) = p # ( P ( f ) u )  and .cl?([) =a*(P(t)u). We also define the charge process 
Zx={Ex(t), teR+}  by 

&(f) = E ( P ( I ) X )  

for XeB(sj+)@B(sj-). By (3.1)43.3), we have that 

dY,( t )  = J( I )  dA t )  6 I +  16 J( I )  dAL.,( t )  14.1) 

dYL(f)=J(t) d A ~ , , ( t ) 6 I + I 6 J ( t )  dA,-,(t) (4.2) 

dEx( f) =dAx, ( t )  6 I -  I 6  dAx:(t). (4.3) 

We may now consider stochastic integrals of the form M =  ( M ( t ) ,  fsR'} where 

M ( t ) =  (dY~(s;(s)H,(~)+If,(s)dE~(s)+If~(s)dY.(s)+H,(s)ds) L 
where Hj= {If,(/), t s R + } ,  ( j =  I ,  2,3,4) aresuitableoperator-valuedprocesses i n  R(sj). 
Now let Mj= { M , ( I ) ,  tslW'}, j =  1,2 be two stochastic integrals of the same type. In 
order to get a workable It6 table we make the following assumption 

x=x* 
x:=x+ X Z = - X -  (4.4) 

X+n+ = i?+ X-a - = -i?. 

We will see below that these are quite natural conditions. We then obtain the following 
It6 formula 

d(MIMz)=dMi M?+MI dMa+dMl dM2 (4.5) 

where the It6 correction term is calculated (subject to parity considerations, see e.g. 
[Appl]) by bilinear extension of the rules 

dY,(t) dY?(t)=d(P(t)n+u, i?+v)  

dYL(t) dY,(t)=d(P(f)a-u, a-U)  

dEx(t) dEx(t)=dEx(t) 

dZx ( t )  dY.(t) = d&l) 
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dY,( I )  dS,y ( I )  = dPU( I )  

d%(/) dYk/)=d&(t) 

dY:(t) dE,(I) =dd*(f). 

These can all be calculated from (2.1) using (4.1)-(4.3) and assumption (4.4), 

Exawp[c. Let .!j=L2(Rt, V)=L2(Rt)@V where V is the &-graded Hilbert space 
V =  V+@V-. In this case we take 

K+=L2(Rt ,  V,) and K-=L'(R', v-). 
We put 

P r ( f @ U )  =xro.r,f@u 

where if A is a measurable set in R', x A  is the indicator function 

xA(p)=  I if P E A  xAp)=O if P ~ A ,  

We take X to be the panty operator in 5 i.e. 

X=(' O) sothat 7T,=;(lfX) 
0 -I 

then it is easy to see that (4.4) is satisfied. 
In the followi~ig, we will always work in this context. (To make direct contact 

with relativistic quantum field theory, we Jnight take V=L2(R3,  C4) !xL2(Iw")@C4.) To 
simplify the It6 formula (4.5), we will from now on take t)=u with [lull= I .  We then 
find that we have 

dY,(f) dY!,(r)=A2ddr 

dYI(t) d'Yo(t)=p2 df 

where ,I2= I I R + U / [ ~  and g2= 117~-uI[', so that 

A* + p 2 =  1.  

These are reminiscent of the It6 correction terms arising from stochastic calculi based 
on quasi-free states of the CARS (see e.g. [ApFr]). 

No&. For previously studied examples of quantum stochastic calculi, the simplest case 
has always been obtained by taking V= @. Observe that if we make such a choice in 
this case we retum to the usual fermion stochastic calculus in the context of [HuPa2]. 

5. Unitary evolutions 

In this section we introduce another &-graded Hilbert space 50 and work in the 
Z2-graded tensor product 

x= 50@S(LZ(W', U). 
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We identify all linear operators L in Bo with their applications L 6 1  to the whole of 
X and similarly identify linear operators M in 5(L2(Rt, 6)) with 16 M on Yf. In the 
following, p will always denote the parity *-automorphism in B(&,). 

All results about stochastic integrals discussed in the previous section extend to this 
context, with obvious modifications. Now let L), j =  1,2,3,4 be densely defined linear 
operators in bo with common invariant &graded domain Do. We consider the quantum 
stochastic differential equation 

d U = U ( d Y ~ L I + L 2 d E x + L 3 d Y V + L d d t )  (5.1) 

with initial condition U(O)=I. 
We will assume that (5.1) has a unique solution-the details of the proof will be 

given elsewhere. We remark that the case where the L,’s are bounded follows by a 
similar argument to that of theorem 5.1 of [HuPdZ]. The unbounded case, subject to 
certain analytical constraints on the Lis can be solved using various techniques (see 
e.g. [Fag] and [Moh] for precise details or chapter 6 of [Mey] for a nice introductory 
account, all with respect to the boson case). 

We are interested in the case where the solution U = ( U ( f ) ,   ER') is such that each 
U(t )  is a unitary operator. We then say that U is a unifaryprocess. Following [Hud2], 
we impose the requirement that each U(!) is even. This has the corisequence that L, 
and L, are odd with & and L4 being even. We then obtain the following. 

Theorem 5.1. A necessary and sufficient condition for U to be a unitary process is that 
there exists an even unitary operator Win Sjo, an even self-adjoint operator H in Sj, 
and an odd operator L i n  5jo satisfying 

[L*, w]=o (5.2) 
with 

L , = L  

&= W-I 

L,=-L*W 

L4=iH-fk2L*L-fp2LL*. 

Proof. The argument is standard (see e.g. [Par]) and for simplicity we will prove only 
the necessity part here. First suppose that each U(f) is isometric so that 
U ( f ) * U ( f ) = l .  By (4.3,  we obtain 

dU* U+ U*dU+dU*dU=O (*) 

where we note by (5.1), we have 

dU* = (dY’:L:+ c e x +  L: d’f’” + Lz dt)U*. 

Substituting into (*) yields 

(dYLL:+LtdEx+ L~d\YU+L4*df)+(dY~L, +L2dEx+L3dY,,+L4dt) 

+ ( L c b  dEx+f2L:LI dt+p2L:L3 dt+ L$L3 d . d  

+ L:L2 d9’.+dT:cLI +d.elvL:L2)=0. 
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Equating coefiicients yields 

dB, : L2 + L* + &*L2 = O  (0 
dPU :I$+ L3 + LTL, = 0 

d d t  : L? + L3 + GL3 =O 
(ii) 

(iii) 

dt :Lq+La*+azL:Ll+pzL~L~=O.  (iv) 

(We have omitted the coefficients of d.Pl and d d "  as these are just the adjoints of (iii) 
and (ii) respectively.) 

From (i), we have that &= W -  I ,  where Wis an isometry. Putting LI  = L ,  we find 
that 

(ii) s L, = -L* w and (iii) = L, = - WL* 

(5.2) ensures that these are equal. Finally (iv) yields the required form for L4. 

dition that W is co-isometric. 
Stochastically differentiating the condition U(f )U( f )*=f  yields the additional con- 

0 

Given such a unitary process U, we define an even grraiiltnn srochustic flow 
J =  ( j , ,  /SIR+) on the &graded *-algebra B(80) by 

j , ( x ) =  U(I).KU(l)* (5.3) 

where xeB(Bo),  tsR' .  

dj,(x) =d&j,(a(x))+d.d,j ,(p(.r)W*) + j , ( l ( x ) )  dSx 

A standard exercise in the use of (4.5) yields the following differential form of (5.3) 

+ j L W )  d n + j , (  f+'L%x)) d d + j d W )  dl (5.4) 

where 

a ( x ) = L x -  Wp(x)k%'*L 

E(x )  =a(x*)" &.Y, =p(x*)* 

r ( x )  = i [ H ,  x] - ;az{ L*LX- 2 L* Ii'p(x) w*L t XL*L) 

p(x)  = L x - p ( x ) L  a ( x )  = H'X w* - x 

-tpZ{LL*.r - 2LP(X)L* +U*}. 

We note that the prescription (c(O),  j,( . )e(O)) yields a quantum dynamical semigroup 
on B(&) with infinitesimal generator r .  

I t  is interesting to compare the forms of (5.1) and (5.4). Equation (5.1) (under the 
conditions of theorem 5.1) describes the evolution of states of quantum system (as 
described by Bo) coupled to an external fermion field (described by g(sj)). In (5.1) 
there is complete symmetry between the particle and antiparticle sectors of this field. 
Equation (5.4) however describes the corresponding evolution of observables. Here we 
find that the symmetry between particles and antiparticles is broken. Indeed particle 
creation is coupled to the system by the twisted superderivation a and antiparticle 
annihilation is coupled by the doubly twisted superderivation y where y( )= 
p( . ) W* (see below, lemma 6.1). 
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I t  is tempting to speculate that similar processes to the above may be responsible 

We note that symmetry is restored in (5.4) ( i t .  y =  a )  if and only if W =  I in which 
for the excess of particles over antiparticles in the observed universe. 

case the dE: temi is absent io both (5.1) and (5.4). 

6. Dirac Bows on superalgebras 

Let rU~B(sj,) be a H2-graded unital *-algebra such that the grading on '11 is compatible 
witb that on bo (i.e. p(x) = 0x0, where 8 is the parity operator on Bo). In this section, 
we aim to generalize the flow of (5.3), by replacing B(sj,) by X and following the ideas 
of [Hudl, 21 and [AppZ]. Let J =  {j,, ts88') be a family of *-homomorphisms from I 
into B ( 5 ) .  We say that J is a Diracfiow on '11 if the following conditions are satisfied 
for each xeX 

(i) j&) = x 6 I 
(ii) Each j ,  is even i.e. j,(p(x))=p'( j,(x)) where p' is the parity *-automorphism 

on B ( 8 )  for all E B B + ,  

(iii) There exist A., a, y, E,  p~S('11) and rs2(rU, S ( g )  such that 

dj,(x) = d & j , ( W )  +d&,,j,(y(x)) +jAA(x)) d& 

+j,(%x)) @+'v+j,(g(x)) ddi+j,(T(x)) dt. (6.1) 

Using the facts that j,(I)=I,j,(x*)=j,(x)* and j,(xy)=j,(x)j,(y) for all x , y s l I ,  f e R C  
and (ii) above, we deduce the following properties of the 'structure maps': 
(SI )  n ( i )  = a ( [ )  = e( [ )= y ( ~ )  = = T ( I )  = O  
(S2) and T are even, a ,  8, y and p are odd, 
(s3) A . ( ~ ) *  =a (x*), r(x)*= h(x*) * *  " ~ ( s )  = a(x ) , y(x) = y(x*)* 
(S4) A= 0-id where U is an even identity preserving *-endomorphism of X, 
(S5) a ( x y ) = a ( x ) y + $ ( x ) a ( y )  where $ = u n p .  

(We say that a is a super &derivation.) 

(We say that y is a super (0, p)-derivation). 

where ( A r ) ( x , g ) = r ( x ) y - r ( x y ) + x r ( y )  

(S6) Y(V)= ~(X)~(Y)+PW(J').  

( ~ 7 )  @r)(x, J') = -a2a(x)a(y)  - P ~ Y ( P ( . w ( P ( Y ) )  

i.e. A is the Hochshild coboundary operator for the complex of multilinear maps from 
'11 into e(%). 

Equation (5.3) gives an example of an inner Dirac flow with PI= B($,). In that case 
we have o(x) = WxW*. The relationship between y and p is clarified by the following. 

Lmnma 6.1. Let IVEZI be even and invertible and let /3 he a superderivation on '11 i.e. 
for all x, y e 8  

B ( V )  =P(xhJ+ P ( X ) B ( Y ) .  

Define y ( x ) = p ( x ) w - ' ,  then y is a super (U, p)-derivation where u(x)=wxw-'. 



In general, irrespective of the analylical problems involved, there may be algebraic 
obstructions to the construction o f  Dirac flows which are not inner as in (5.3). More 
precisely, given U, a and y there is no guarantee that t exists satisfying (S7). We close 
this section by indicating how to solve this problem under the assumption that a i s  a 
*-automorphism of 'U. 

We need two results from [AppZ]. 
(a) [App2-lemma 2.11 
If E is a super a-derivation, then 2 is a super a-'-derivation where 

2 = & o a - ' .  

(b) [AppZ-theorem 2.21. 

Define T,eB(%(, e(%)) by 

T,(X) = ( E u c  - 2.24 (x) & - x2 &) 

wherexE2I and # = c r o p .  then forall s ,p8  

(AT&, Y)= -%x)&(y). 

Before proving our main result we need the following lemma. 

Lenam 6.2. Let w = y 0 p then 6 i s  a super #-derivation on % 

Proof. For 3, ye%, we have 

@(a&) = y(p(a&)) = Y ( P ( ~ ) P ( ~ ) )  

= P ' ( a ) y ( m )  + y(p(a))o(p(b)) by 6 6 )  
=am(&)+ w(a)#(&). 

Hence 

&(ab) =@(&*U*)* 

=6(a)&+$(a)6(b)  as required. 

Theoreilr 6.2. Define ref!(%, L?(ZI)) by 

e=A'T. + flZT&+ 6 

(AT)& V )  =-J") - f l 2 r ( p ( . ~ ) ) M y f )  

where 6 is a *-derivation on cll then (S7) is satisfied, i.e. 

for ail x, ye%. 

0 
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Proof. By (b) above, we have 

(ATa)&),)  =-rZ(.r)a(y). 

(ATa)(x, J') = - z ( ~ ) m ( y ) .  

By (b) again and lemma 6.2 

However 8 = 0 = y 0 p and the required result follows by linearity of A. 0 

In  the case where II is a norm-dense *-subalgebra of a 6;-algebra, a scheme for 
constructing a large class of Dirac flows by unitary conjugation can be obtained by a 
slight perturbation of the procedure discussed in section 4 of [AppZ]. 
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