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Abstract. A quantum stochastic calculus for fermions is developed where the basic integra-
tors are based on Dirac fields and the charge operator. The associated ItS formuia has
seven non-tzivial correction terms. Conditions are found for the solutions of stochastic
differential equations o be unitary and it is shown that the corresponding quantum stochas-
tic flow manifests a broken symmetry whereby the particie and antiparticle noises no longer
balance each other. An abstract theory of such flows is then developed. By employing the
unification between boson and fermion stochastic caleuli, we are able to develop the entire
theory using boson Fock spaces.

1. Introduction

The dissipative behaviour of a quantum system (S) is described by considering its
interaction with another quantum system {R)—the ‘reservoir’ or ‘heat bath’. We will
in this paper be interested in the case where R is of a fermionic nature.

Historically, a number of models have been considered where the interaction was
taken to be 2 ‘quantum noise’ (see [Acc] for a nice account of this). A precise mathemati-
cal theory of quantum noise has been developed by Hudson and Parthasarathy
({HuPal], [Par], [Mey]) in which the behaviour of the noise is described by a stochastic
calculus based on three fundamental operator-valued stochastic processes constructed
from suitable annihilation, creation and number conservation operators acting in a
Fock space. Specifically fermionic theories of this type were developed in [BSW],
[ApHu], [Appl] and [HuPa2].

Quantum stochastic calculi give rise to the following model of dissipative bebaviour.
Observables associated with 5 are modelled by (the self-adjoint) elements of some
unital *-algebra U acting in an “initial’ Hilbert space $, and observables associated
with R act on the Hilbert space I' (usually a Fock space). The combined state space
for (§+ R) is =9I The evolution of state vectors in % is described by a unitary
operator valued process U=(U(?), teR") which satisfies an appropriate stochastic
differential equation and the time evolution of an operator xe¥ is described by the
quantum stochastic flow J={j,, e R") where j(x) = U()xU{£)*. We note that U and
J do not salisfy a group law in general but are ‘Markovian cocycles’ in the sense of
[Acc], Finally the reduced dynamics in S is a quantum dynamical semigroup (7}, teR™)
on U [Lin] obtained through the prescription T, (x)={wq, j{x)w> where yq is the
vacuum vector in T,
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A long sequence of papers by Accardi et af have justified the validity of this model
for a number of concrete physical systems where the weak coupling or low density limit
is taken—[AFL] and [AcLu] are particularly relevant to the context considered below
(see also [AAFL] for an exposition of the main ideas).

So far quantum stochastic caleuli have generally been based on non-relativistic free
fields acting in Fock space. An exception to this rule is [FrRu] where a specific relativis-
tic model was considered using boson noise. The aim of the present paper is lo begin
the study of a quantum stochastic calculus based on relativistic fermion fields where
the quantum noise has both ‘particle’ and ‘antiparticle’ components (e.g. an electron-
positron field).

Instead of the usual three quantum noises described above, we employ two mutually
adjoint Dirac fields (sums of particle creation (annihilation) and antiparticle annihila-
tion (creation) operators, respectively) and the charge conservation operator. We thus
obtain an irreducible representation of the CARs (canonical anticommutation relations)
on Dirac-Fock space which is the tensor product of two fermion Fock spaces [Tha].
Using the unification procedure of [HuPa2] and {PaSi], we are able to realise these
operators in boson Fock space which leads to considerable mathematical simplification
(compare [HuPa2] with {Appl]). By Z;-grading boson Fock space in a natural way,
we are also able to incorporate a Z;-graded initial space into this scheme so that S can
be either bosonic or fermionic.

The scheme of this paper is as follows. In sections 2 and 3 below we give an account
of the ideas discussed in the previous paragraph. The construction of a stochastic
calculus and the vitally important 1t6 formula for the product of two stochastic integrals
are described in section 4. In section 5 we construct the unitary process U and the
associated flow J. Here we encounter an interesting phenomenon whereby the Dirac
fields which drive U become decoupled in the equation for J so that the particle and
antiparticle noises interact with the system observables in different ways. Finally we
consider abstract ‘Dirac flows’ J in section 6, these being of general interest from the
point of view of supersymmeltric quantum theory and nopcommutative differential
geometry (see [Hud2], [App2]).

In order for this paper to be accessible to a wide range of potential readers, we have
omitted complete proofs for some of our results where these are of a highly technical
natuye. Full details will appear in future publications.

Notation. Let V, and ¥ be complex vector spaces. 2V, ¥;) will denote the space of
all linear maps from V, into ¥,. We write this space as 2(¥) when Vi=V;=V.
Vi@V2 will denote the algebraic tensor product of Vy and ¥,. The identity operator
on ¥ will always be denoted as /. If 7is an operator in a Hilbert space any statement
involving T# should be read twice, once where 7% is read as T and once where it is
read as T*. If S, Te?¥ where N is an algebra, [S, T]=8T— TS is the commutator and
{8, T} =8T+ TS, the anticommutator.

2. Quantum stochastic calculus

Let X be a complex, separable, infinite-dimensional Hilbert space. We denote by I',{K)
and I'¢(K), respectively, the boson and fermion Fock spaces over K.
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Thus

To(K)= @ K& and T(K)=@® K'®”

n=0 n=0

where ®, denotes the symmetric and @, the antisymmetric tensor product. For each
fek, let e(f)el,(K) denote the exponential vector

ef I )

then & is dense in I'y(K') where & is the linear span of {e( /), feK}. For each fe K, we
denote by a(/) the boson annihilation operator in Tw(K) and by &'( /), the boson
creation operator. We also introduce the conservation operator dI'(X') for XeB(K).
Precise definitions can be found in [Par]. We take & as a common domain for all three
classes of operator. Note that on & we have

a(f Y =d'(f) and dr(X)*=dIr(x™)

for each fe K, Xe B(K'). We further have that the extended CCRs hold on & i.e. for all
figeKand X, YeB(K)

[a(f ), alg)]=[a"(f), a'()]=0
la(f), a"@1= (S, g>F

[dT(Y), dU(¥)]=dI([X, ¥])
[a( /), dT(X)]=a(X™f)
[dr(X), a'(f)]=—a'(X1).

Now let P be a continuous projection valued measure on R taking values in B(K).
We write P,=P(—0, t) for each teR. We fix 4, ve X and Xe B(K) such that [X, P,}]=
0 for all teR. We define the boson annihilation process 4, = {A.(1), teR} by

A ) =a(P,.u).

E(f)=(1,f,

The boson creation process A, ={A1(z), 1€ R} is given by
Al =a"(Po)

and the conservation process Ay={Ax (1), teR} is
Ax(=dT(P.X).

In [Par] quantum stochastic integrals M= {M(?), teR} of the form

M= J t (H\(s) dALS) + Ha(s) dAx (5) + Ha(s) dAL(s) + Huls) ds) 2.0

are defined as families of linear operators with domain & where H;={H;(1), teR} for
Jj=1,2,3, 4 are suitable operator-valued processes.

A vital role in this theory is played by the quantum it formula which states that
if M; and M, are two stochastic integrals of the form (2.1} then so is their product
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MiMy={M (r)M(t), teR}. Moreover the form of the product is determined by
d(M1M2)=dM|'A{z'l'M[‘sz"‘dM['sz. (2.2)

The 1td correction term dM, - dAf, is computed by bilinear extension of the rule that
all products of differentials vanish with the exception of

A4 (0 dANH =d{Pu, vy
dAx(2)- dAl(r)=dAk()
dA(1) dAx () =dAy (1)
dAx (1) dAx (5 =dAs(r).
Now let /= {J(1), reR} be defined on & by
JBe( f)=e((T—-2P)f) for each fe K

so that each J(¢) extends to a self-adjoint, unitary operator on I',{K) which thus satisfies
J(£)*=1 for each e R. We further define for each u, veK,

—a0

b(u)= Jw J(1) dA(1) i’JT(v)=J.w J() dAL (D).

1t is shown in {PaSi] and [HuPa2] that we thus obtain an irreducible representation of
the CARs in I'y(K). In fact the extended CARs hold with the same conservation
operators as for the boson case, ie.

{blu), b(v)} = {b'(w), 5 (2)} =0
{b(w), b'(v)} =<u, oDI

[6(x), AT (X )] =b(X ")
[dI(X), b ()] = —Bl(Xw).

This representation can be used to construct a canonical isomorphism 15 between [,(K)
and I'y(X), the details of which can be found in [PaSi].

3. Dirac-Fock space

Let $ be a complex, separable Hilbert space. It is said to be Zy-graded if it has a
decomposition

5“5-}@5—--

H. is called the odd sector and -, the even seclor of H. A dense linear manifold 2 is
called a Z,-graded domain if it admits the vector space decomposition =2, 0% _
wherein 2. 9. and 2_<$... We denote by 8 the parity operator in $ which acts as
Ion %, and —7 on $_. 0 is self-adjoint and unitary.

A linear operator T in § with domain 2 is said to be even if T2, <= $H. and odd if
T2, < $=. The parity *-automorphism p of B($) is defined by p(T)=0T780.
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If §, and H, are Zpgraded Hilbert spaces, their tensor product $ ®$; is also
Zz-graded by the prescription

(58521 =(H1+ @92+ ) D(H1-®H2-)
(H51092)-=(H1+:@D:-)D(H1: @ H2-}.

Similarly if 2, are Z,-graded domains in $; (j=1,2), then 2,@%, is a Z,-graded
domain in $;®%,. If T, are linear operators in §, with domain 2; (j=1,2) and T is
of definite parity, the Chevalley tensor product Ty ® T is defined by linear extension of
the formula

(1) ® T2) (0 @) = (— 1) TN (T ny @ T )
where ;e Z; (j=1, 2) with u of definite parity and

il T is odd
if T, is even

5(T2)={;

with 8(u;) defined similarly (see [Che], [ApHu]). The definition extends by linearity to
the case where 73 is not of definite parity. We note the following easily verified properties
of the Chevalley tensor product:

() (SI®SHTI R T)y=(—1)°CPT($,5 QT Ty)

for S;, T) of definite parity, the operators being such that the right hand side is well-
defined.

() {S®LI®TI=0 if § and T are both odd.
[S®LIG®T]=0 if § and T are of definite parity but not both odd.

(i) (S®TY=—S*&T* if § and T are both odd.
Now consider boson Fock space I',(K)—this is Z,-graded by the prescription

Ip(K)o= @ K& and TWK)-=@ K@,
n=0 a=g

Define for each fe X,

IR
Cos (f)_ ,ﬁ,.-.’\/ﬁ,”. € b( )+

f®3 f®2n4 t
sinh(f)=(f, =, ..., ,...)EF(K)_
SV Jent ! ’
then & is a Z,-graded domain in I'y(K'} with & being the linear span of {cosh( ), [ H}
and &., the linear span of {sinh( /), feH}. We note that boson annihilation and
creation operators are odd and conservation operators are even,

Fermion Fock space 'i(K) is also Z,-graded by

rr(K)+= @ K(@;)Z" and ]_.f(K)_= (—B K(@g)bﬁ-l.

L alid =0

We note that the isomorphism 1 preserves the grading i.e. 1x(I'y(K)2) =Te(K)as.
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Now suppose that K is itself Z,-graded, K=K. @ K. and denote by 7. the ortho-
gonal projections from K onto K., then we have the canonical isomorphism

(K} = Fo(K)@Tw(K-)

wherein each e( /') is mapped to e(x, / )@e(an - ). We use this isomorphism to identify
the two spaces. Let $=H.®9H- be another Z;-graded Hilbert space and define K, =
$, and K_=C$H_ where C is complex conjugation. We define Dirac-Fock space §(H)
to be the Z,-graded Hilbert space I',(K) where K is as above. Using the isomorphism
1x, g, we identify F{H) with Ty (K, )®T(K-) (this latter form may be more familiar
to some readers—see e.g. [Thaj).

Now for each we$, define the Dirac field operators by

V) =b(m) BI+IE B (z_ i)
Y w)=b"(z.) ® I+1& b(x_a)
and for XeB(9),

of; 1)
0 x-
define the charge operator

EX)=dI'(X)®I-1&dI(x¥).

It is shown in [Tha] that {'¥'(z), ‘{’*(u}; u, veH} yield an irreducible representation
of the CARs in §(H). Moreover, we note that the extended CARs hold i.e,

{¥(), ¥(0)} = {¥(w), ¥'(v)} =0
{¥(@), Y(0)} =, 0D]

[E(X), E(Y)]=E(X, Y])

[¥(w), ECOT=¥(X *u)

[ECX), ¥ ()] = ~¥'(Xu)

for all u, ve$, X, YeB(H. ) B B(H-).

In the following we will occasionally use the notation p¥(/)=b%(n. fI®I t0
denote fermion particle creation and annihilation operators and a” (/) =1& b*(=_ f)
to denote antiparticle creation and annihilation operators.

We remark thal we have the following stochastic integral representations for Dirac
fields in terms of boson processes

WY(u)= J ) J(0) dA, (BT + I®r J(1) dAL (0 @G.1
Y )= j ? S dAL (R T+I® f ’ J(O) dAz_ (1) (3.2)
E(X)=J‘m dAX+(t)®I—I®jw dAx (2). (3.3)

Here J is defined with respect to a B($)-valued projection valued measure P which
satisfies [P(#), 7] =0 for all teR.
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4, Stochastic integration

In the remainder of this paper, in order to develop a stochastic theory, our projection
valued measure P will be defined only on R*,
We define the Dirac processes W7 = {W#(1), teR*} by

W = P(Hu) for teR*, ue$.
So that each

W1y =2 (1) + LD
and

Y1) = Zo(n) + (1)

where 27 (0)=p*(P(u) and & (1) =a™(P(t)u). We also define the charge process
Ey={Ex (1), 1eR"} by

Ex () =E(P(0X)
for Xe B($H.)BB(H-). By (3.1)-(3.3). we have that

AY(=J(1) dA ., () R T+ J(1) dAL_o(0) (4.1)
d¥N() =J(1) dAL, LD R T+TE J(1) dA . (1) (4.2)
dEx (1) =dAx, () ® T- 1@ dAx (1. (4.3)

We may now consider stochastic integrals of the form M= {M(s), teR*} where

M) = J (AW H (5) + Ho(5) dEx (5} + Hi(s) d¥u(s) + He(s) ds)

where H;={H, (1), teR"}, (j=1, 2, 3, 4) are suitable operator-valued processes in ($).
Now let M;={M;{1), 1eR"}, =1, 2 be two stochastic integrals of the same type. In
order to get a workable 1t6 table we make the following assumption

X=x*
Xi=X. Xi=-x_ (4.4)
X+R'+=?r+ Xon_=—m_,

We will see below that these are quite natural conditions. We then oblain the following
Ité formula

d(M \My)=dM, M.+ M, dM,+dM, dM, (4.5)

where the Itd correction term is calculated (subject to parity considerations. see e.g.
[Appl]) by bilinear extension of the rules

AW, (1) d¥H(0) =d{P(Dm u, m.0)
d¥i(r) d¥ () =d{P(D_u, 0>
dEx (1) dEx (1) =dEx (1)
dEy (1) d¥. () =d/(0)
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d¥,(1) dEx (1) =dPu(1)

dEx () AW =dPi(r)

dW¥(1) dEx (1) =d.A.(£).
These can all be calculated from (2.1) using (4.1)-(4.3) and assumption (4.4).
Example. Let $=L}R", V)~L*R*)®V where V is the Z,-graded Hilbert space
V=V.@V_. In this case we take

K.=LYRY, V.) and K_=LYR*, V).
We put

P f@u)=xp0.nf®u
where if 4 is a measurable set in R, x4 is the indicator function

xAp=1 if  ped xAp)=0 if  péA
We take X to be the parity operator in $ i.e.

X=(é _O) so that mo=3(J£X)

then it is easy 1o see that (4.4} is satisfied.

In the following, we will always work in this context. (To make direct contact
with relativistic quantum field theory, we might take V= L*(R?, C*) > LA(RHYRC") To
simplify the It6 formula (4.5), we will from now on take v=u with ||| =1. We then
find that we have

d¥. (1) d¥i() = A* dr
d¥l( dW () =p? dt
where A= || x.u]? and p?=|z_u[? so that
A4 A=l
These are reminiscent of the Itd correction terms arising from stochastic calculi based

on quasi-free states of the CARs (see e.g. [ApFr]).

Nete. For previously studied examples of quantum stochastic calculi, the simplest case
has always been obtained by taking V= C. Observe that if we make such a choice in
this case we return to the usual fermion stochastic calculus in the context of {HuPa2],

5. Unitary evolutions

In this section we introduce another Z,-graded Hilbert space $o and work in the
Z~graded tensor product

K =Ho®F(LY(R, V).
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We identify all linear operators L in $o with their applications L& 7 to the whole of
S and similarly identify linear operators M in H(LA(R*, $)) with /& M on #. In the
following, p will always denote the parity *-automorphism in B($q).

All resulls about stochastic integrals discussed in the previous section extend to this
context, with obvious modifications. Now let L;, j=1, 2, 3, 4 be densely defined linear
operators in $g with common invariant Z,-graded domain . We consider the quantum
stochastic differential equation

dU=UMYIL + L, dSy+ Ly d¥,+ L, d1) (5.1)

with initial condition U(0)=1.

We will assume that (5.1) has a unique solution—the details of the proof will be
given elsewhere. We remark that the case where the s are bounded follows by a
similar argument to that of theorem 5.1 of [HuPa2]. The unbounded case, subject to
certain analytical constraints on the L/s can be solved using various technigues (see
e.g. [Fag] and [Moh] for precise details or chapter 6 of [Mey] for a nice introductory
account, all with respect to the boson case).

We are interested in the case where the solution U=(U(¢), teR"} is such that each
U(1t} is a unitary operator. We then say that U is a unitary process. Following [HudZ2],
we jmpose the requirement that each U(¢) is even. This has the consequence that L,
and L; are odd with I, and L, being even. We then obtain the following,

Theorem 5.1, A necessary and sufficient condition for U to be a unitary process is that
there exists an even unitary operator W in $y, an even self-adjoint operator H in $,
and an odd operator L in $, satisfying

[L*, w]=0 (5.2)
with

L=L

Ly=W-1I

Li=—-L*W

Ly=iH—sA2LXL -3y LL*,

Proof. The argument is standard (see e.g. [Par]} and for simplicity we will prove only
the necessity part here. First suppose that each U/(#) is isometric so that
U()* U(t) =1. By (4.5), we obtain

dU* U+ U*dU-+dU*dU=0 (*}
where we note by (5.1}, we have

dU*=(dYILY + LY dEy+ LT d¥, + LT dO) U™,
Substituting into () yields
(ALY + LY dEx+ LF AW, + LF dD) + (dW] L) + Ly dEx + Ly d¥, + Ly d7)

+(LFL, Ay + ALY L, dt+ P LY Ly dt+ L¥L, dov]

+ LY AP, AP LI L +d st ,L¥L) =0.
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Equating coefficients yields

d5, 1L+ LX+L3L,=0 (i)
d?, LF+ L+ LT, =0 (i1}
deth LY+ Ly+ L3L;=0 iii)
dt:Ly+ Ly +APLTL +p*LF L =0. {iv)

(We have omitted the coefficients of d2} and d.=#, as these are just the adjoints of (jii)
and (ii) respectively.)

From (i), we have that Ly= W— I, where F¥ is an isometry. Putting L, = L, we find
that

(i) = Ly=-L*W and (ii) = Ly=—WL*

(5.2) ensures that these are equal. Finally (iv) yields the required form for L,.
Stochastically differentiating the condition U{(r){X1)*={ yields the additional con-
dition that W is co-isometric. O

Given such a unitary process U, we define an even guanfurm stochastic flow
J=(j;, teR") on the Z,-graded *-algebra B($q) by

Jx)= U)X U(D* (5.3)

where xe B($q), teR*.
A standard exercise in the use of (4.5) yields the following differential form of (5.3)

dji(x) =P} jla(x)) + dat, jBLYW™) + A (x)) dEx

+jl@00)) APt WB(x)) A+ jf 2 (x)) dt (5:4)
where
a{x)=Lx— Wp{x) W*L B(x)=Lx—p(x)L A(x)=WxW*—x
d(x)=alx")* Blx)=px*)
t(xYy=i[H, x] —3A2{L* Lx— 2L Wp(x) W* L+ xL*L}

—3p?{LL*x = 2Lp(xX)L* + xLL*}.

We note that the prescription {c(0}, j,( - )e{0)> yields a quantum dynamical semigroup
ot B(Hy) with infinitesimal generator z.

1t is interesting to compare the forms of (5.1) and (5.4). Equation (5.1) (under the
conditions of theorem 5.1) describes the evolution of states of quantum system (as
described by Hy) coupled to an external fermion field {described by F(H)). In (5.1)
there is complete symmetry between the particle and antiparticle sectors of this field.
Equation (5.4) however describes the corresponding evolution of observables. Here we
find that the symmelry between particles and antiparticles is broken. Indeed particle
creation is coupled to the system by the twisted superderivaiion ¢ and anliparticle
annihilation is coupled by the doubly twisted superderivation y where y(-)=
B( - YW?* (see below, lemma 6.1).
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It is tempting to speculate that similar processes to the above may be responsible
for ihe excess of parlicles over antiparticles in the observed universe.

We note that symmetry is restored in (5.4) (i.e. y=a) if and only if W=/ in which
case the d= term is absent in both (5.1) and (5.4).

6. Dirac flows on superalgebras

Let A< B($Ho) be a Z;-graded unital *-algebra such that the grading on U is compatible
with that on $o (i.e. p(x) =80x8, where @ is the parity operator on Ho). In this section,
we aim to generalize the fllow of (5.3), by replacing B($,) by W and following the ideas
of [Hudl, 2] and [App2]. Let J={j,, teR*} be a family of *-homomorphisms from 2
into B(H). We say that J is a Dirac flow on U if the following conditions are satisfied
for each xe

(i) Jo(x)=x @7

(i) Each j is even i.e. j(p(x)) =p'(jx)) where p’ is the parity *-automorphism
on B($) for all teR*,

(ii1) There exist A, a, ¥, &, Y &({W) and te (A, 8(W)) such that
dj(x) =dP, ja(x)) +dst, JL¥(x)) + /LA (%)) dEx
+j@(x)) 4P, +j(#(x)) da/l +j(x(x)) de. (6.1)

Using the facts that JD =1, j(x*}y=j(x)* and Jlxy)=jlx)j(y) for all x, yel, teR"*
and (ii) above, we deduce the following properties of the ‘structure maps’:
81) A)y=e(y=d(y=y()=7(H)=1(])=0
(82) A and 7 are even, o, &, ¥ and ¥ are odd,
(S3) A(x)* =A(x"), t(x)* = (x")

()= a(x*)*, 700 = y(x*)*
(S4) A=o0—id where o is an even identity preserving *-endomorphism of I,
(85) a(xy)=a(x)y+¢(x)a(y) where ¢=0 - p.

{We say that ¢ is a super ¢-derivation.)
(56) y(xy)=y(x)o(y)+p(x)y()).

(We say that 7 is a super {o, p)-derivation).
(S7) (A7)(x, 3) = =A@ (x)a(y) — p*y (p())F(o(»)

where (A7)(x, y)=1(x)y = 1(xp) +x7(3)
i.e. A is the Hochshild coboundary operator for the complex of mullifinear maps from
A into L(U).

Equation (3.3) gives an example of an inner Dirac flow with U= B{Hy). In that case

we have o(x)= WxW™*. The relationship between y and 8 is clarified by the following.

Lemma 6.1. Let we®¥ be even and invertible and let § be a superderivation on % i.e.
for all x, ye¥U

Blxy)=B(x)y+ p(x)B( ).
I

Define y(x)=B(x)w™, then y is a super (o, p)-derivation where ¢ (x)=wxw™".



268 D Applebaum

Proof. y(xy)=Blxyyw™’
=(B(x)y+ p()B(yNw™!
=B ™+ p()B(Yw
=y(x)o(y)+p(xX)r(»). O
In general, irrespective of the analytical problems involved, there may be algebraic
obstruciions to the construction of Dirac flows which are not inner as in (5.3). More
precigely, given o, ¢ and y there is no guarantee that © exists satisfying (S7). We close
this section by indicating how to solve this problem under the assumption that o is a
*-automorphism of U.
We need two results from [App2].

(a) [App2—lemma 2.1]
If £ is a super o-derivation, then £ is a super o '-derivation where

g=gog™,
(b) [App2--theorem 2.2].
Define T.€2(U, £(U)) by
Tx)=1(Bex—28¢(x)e—xb¢)
where xe¥ and ¢=o = p, then for all x, ye¥
{(AT)(x, y)=—E(x)(y).

Before proving our main result we need the following lemma.
Lemma 6.2. Let @=y = p then & is a super ¢-derivation on U

Proof. For x, ye¥, we have

a{ab) =y(p(ab)) = y(p(a)p(b))
=p(@)y(p(8)) + y(p(2))o (p(b)) by (86)
=aw(b)+ o(a)p(b).
Hence
d(ab) = @ (b a*y*

= @(a)b+ P (a)D(b) as required. O

Theorem 6.2. Define 7e 2(U, 2(A)) by
t=A2T, + y 2T+ 8
where & is a *-derivation on 2 then (S7) is satisfied, i.e.
(AT)(x, ) =—Aa(x)a(y)— 1 y(p(x)) F(o(1))
for all x, ye.
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Proof. By (b) above, we have
(ATL)(x, )= —d{x}a(y).
By (b) again and lemma 6.2
(AT5)(x, y)=—d(x)e().

However @ =@ =1y ° p and the required result follows by linearity of A. O

In the case where U is a norm-dense *-subalgebra of a C*-algebra, a scheme for
constructing a large class of Dirac flows by unitary conjugation can be obtained by a
slight perturbation of the procedure discussed in section 4 of [App2].
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